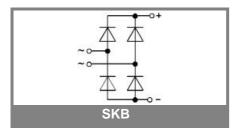
SKB 15

Power Bridge Rectifiers

SKB 15

Features


- Square plastic case with screw terminals
- Blocking voltage up to 1600 V
- Metal baseplate for improved heat transfer

Typical Applications

- Internal power supplies for electronic equipment
- Electronic control equipment
- DC motors
- Field rectifiers for DC motors
- Battery charger rectifiers
- Recommended snubber network: RC: 100 nF, 20...50 Ω (P _R = 1 W)
- 1) Freely suspended or mounted on an insulator
- Mounted on apainted metal sheet of min.
 250 x 250 x 1 mm

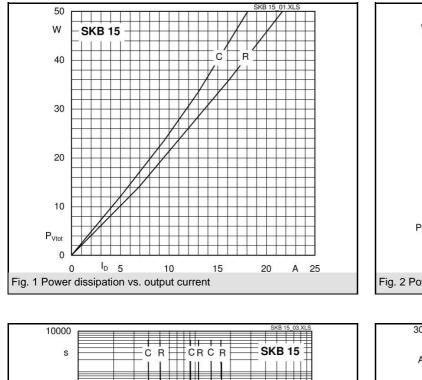
V _{RSM} , V _{RRM}	V _{VRMS}	I _D = 15 A (T _c = 117 °C)	C _{max}	R _{min}
V	V	Types	μF	Ω
200	60	SKB 15/02 A2		0,15
400	125	SKB 15/04 A2		0,3
800	250	SKB 15/08 A2		0,5
1200	380	SKB 15/12 A2		0,75
1400	440	SKB 15/14 A2		0,9
1600	500	SKB 15/16 A2		1

Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, isolated ¹⁾	5	А
5	$T_a = 45 \text{ °C}, \text{ chassis}^{2)}$	11	А
I _{DCL}	$T_a = 45 \text{ °C}, \text{ isolated}^{1)}$	4	А
	T _a = 45 °C, chassis ²⁾	9	А
	T _a = 45 °C, P5A/100	14	А
I _{FSM}	T _{vi} = 25 °C, 10 ms	370	A
	T _{vi} = 150 °C, 10 ms	320	А
i²t	T _{vj} = 25 °C, 8,3 10 ms	680	A²s
	T _{vj} = 150 °C, 8,3 10 ms	500	A²s
V _F	T _{vi} = 25°C, I _F = 150 A	max. 2,2	V
V _(TO)	$T_{vj} = 150^{\circ}C$	max. 0,85	V
r _T	$T_{vj} = 150^{\circ}C$	max. 12	mΩ
I _{RD}	$T_{vj}^{3} = 25^{\circ}C, V_{RD} = V_{RRM}$	300	μΑ
	$T_{vj} = C, V_{RD} = V_{RRM} \ge V$		μΑ
I _{RD}	$T_{vj} = 150^{\circ}C, V_{RD} = V_{RRM}$	5	mA
	$T_{vj} = °C, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	$T_{vj} = 25^{\circ}C$	10	μs
f _G		2000	Hz
R _{th(j-a)}	isolated ¹⁾	12	K/W
0,	chassis ²⁾	4,3	K/W
R _{th(j-c)}	total	1	K/W
R _{th(c-s)}	total	0,3	K/W
T _{vi}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a.c. 50 60 Hz; r.m.s.; 1 s / 1 min.	3000/2500	٧~
M _s	to heatsink	1,5 ± 15 %	Nm
Mt	to terminals	1 ± 15 %	Nm
a			m/s²
w		65	g
Fu		20	А
Case		G 9	

SKB 15

100

1

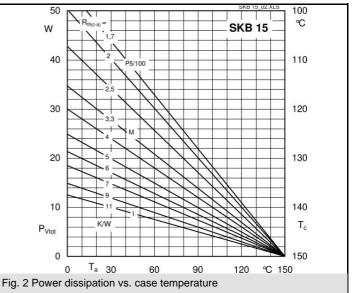

t

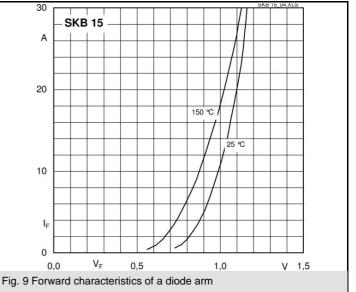
0,01

1

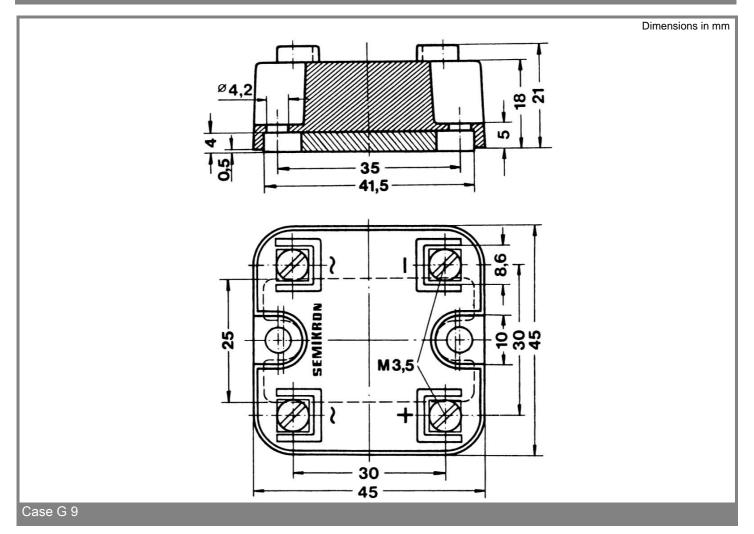
 I_{D}

Fig. 6 Rated overload characteristics vs. time


±P5/100


А

100


M

10

SKB 15

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.